Combined Cycle Gas Turbine Power Generation

Combined Cycle

A combined cycle is characteristic of a power producing engine or plant that employs more than one thermodynamic cycle. Heat engines are only able to use a portion of the energy their fuel generates (usually less than 50%). The remaining heat (e.g., hot exhaust fumes) from combustion is generally wasted. Combining two or more thermodynamic cycles, such as the Brayton cycle and Rankine cycle, results in improved overall efficiency.

It can also work with the Otto, Diesel, and Crower cycles which may allow it to be suited to automotive use. Aside from the Rankine cycle, the Stirling cycle could also be used to re-use waste heat in automotive or aeronautical applications, for the simple reason that there is less weight (water) to carry and that Stirling engines or turbines can be made to operate with low temperature differences.

In a combined cycle power plant (CCPP), or combined cycle gas turbine (CCGT) plant, a gas turbine generator generates electricity and the waste heat is used to make steam to generate additional electricity via a steam turbine; this last step enhances the efficiency of electricity generation. Most new gas power plants in North America and Europe are of this type. In a thermal power plant, high-temperature heat as input to the power plant, usually from burning of fuel, is converted to electricity as one of the outputs and low-temperature heat as another output. As a rule, in order to achieve high efficiency, the temperature difference between the input and output heat levels should be as high as possible.

This is achieved by combining the Rankine (steam) and Brayton (gas) thermodynamic cycles. Such an arrangement used for marine propulsion is called combined gas (turbine) and steam (turbine) (COGAS).

Design Principle

In a thermal power station water is the working medium. High pressure steam requires strong, bulky components. High temperatures require expensive alloys made from nickel or cobalt, rather than inexpensive steel. These alloys limit practical steam temperatures to 655 °C while the lower temperature of a steam plant is fixed by the boiling point of water. With these limits, a steam plant has a fixed upper efficiency of 35 to 42%.

An open circuit gas turbine cycle has a compressor, a combustor and a turbine. For gas turbines the amount of metal that must withstand the high temperatures and pressures is small, and lower quantities of expensive materials can be used. In this type of cycle, the input temperature to the turbine (the firing temperature), is relatively high (900 to 1,400 °C). The output temperature of the flue gas is also high (450 to 650 °C). This is therefore high enough to provide heat for a second cycle which uses steam as the working fluid; (a Rankine cycle).

In a combined cycle power plant, the heat of the gas turbine's exhaust is used to generate steam by passing it through a heat recovery steam generator (HRSG) with a live steam temperature between 420 and 580 °C. The condenser of the Rankine cycle is usually cooled by water from a lake, river, sea or cooling towers. This temperature can be as low as 15 °C
In an automotive powerplant, an Otto, Diesel, Atkinson or similar engine would provide one part of the cycle and the waste heat would power a Rankine cycle steam or Stirling engine, which could either power ancillaries (such as the alternator) or be connected to the crankshaft by a turbo compounding system.



Efficiency of CCGT plants

By combining both gas and steam cycles, high input temperatures and low output temperatures can be achieved. The efficiency of the cycles add, because they are powered by the same fuel source. So, a combined cycle plant has a thermodynamic cycle that operates between the gas-turbine's high firing temperature and the waste heat temperature from the condensers of the steam cycle. This large range means that the Carnot efficiency of the cycle is high. The actual efficiency, while lower than this, is still higher than that of either plant on its own.The actual efficiency achievable is a complex area.

Configuration of CCGT plants

The combined-cycle system includes single-shaft and multi-shaft configurations. The single-shaft system consists of one gas turbine, one steam turbine, one generator and one Heat Recovery Steam Generator (HRSG), with the gas turbine and steam turbine coupled to the single generator in a tandem arrangement on a single shaft. Key advantages of the single-shaft arrangement are operating simplicity, smaller footprint, and lower startup cost. Single-shaft arrangements, however, will tend to have less flexibility and equivalent reliability than multi-shaft blocks. Additional operational flexibility is provided with a steam turbine which can be disconnected, using an SSS Clutch, for start up or for simple cycle operation of the gas turbine.
Multi-shaft systems have one or more gas turbine-generators and HRSGs that supply steam through a common header to a separate single steam turbine-generator. In terms of overall investment a multi-shaft system is about 5% higher in costs.

Single- and multiple-pressure non-reheat steam cycles are applied to combined-cycle systems equipped with gas turbines having rating point exhaust gas temperatures of approximately 540 °C or less. Selection of a single- or multiple-pressure steam cycle for a specific application is determined by economic evaluation which considers plant installed cost, fuel cost and quality, plant duty cycle, and operating and maintenance cost.

Multiple-pressure reheat steam cycles are applied to combined-cycle systems with gas turbines having rating point exhaust gas temperatures of approximately 600 °C.

The most efficient power generation cycles are those with unfired HRSGs with modular pre-engineered components. These unfired steam cycles are also the lowest in cost. Supplementary-fired combined-cycle systems are provided for specific application.

The primary regions of interest for cogeneration combined-cycle systems are those with unfired and supplementary fired steam cycles. These systems provide a wide range of thermal energy to electric power ratio and represent the range of thermal energy capability and power generation covered by the product line for thermal energy and power systems.